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We consider the steady viscous/inviscid interaction of a two-dimensional, nearly sep-
arated, boundary layer with an isolated three-dimensional surface-mounted obstacle,
for example in the large Reynolds number flow around the leading edge of a slen-
der airfoil at a small angle of attack. An integro-differential equation describing the
effect of the obstacle on the wall shear stress valid within the interaction regime is
derived and solved numerically by means of a spectral method, which is outlined
in detail. Typical solutions of this equation are presented for different values of the
spanwise width B of the obstacle including the limiting cases B → 0 and B → ∞.
Special emphasis is placed on the occurrence of non-uniqueness. On the main (upper)
solution branch the disturbances to the flow field caused by the obstacle decay in the
lateral direction. Conversely a periodic flow pattern, having no decay in the span-
wise direction, was found to form on the lower solution branch. These branches are
connected by a bifurcation point, which characterizes the maximum (critical) angle
of attack for which a solution of the strictly plane interaction problem exists. An
asymptotic investigation of the interaction equation, in the absence of any obstacle,
for small deviations of this critical angle clearly reflects the observed behaviour of the
numerical results corresponding to the different branches. As a result we can conclude
that the primarily local interaction process breaks down in a non-local manner even
in the limit of vanishing (three-dimensional local) disturbances of the flow field.

1. Introduction
A systematic asymptotic analysis of Prandtl’s classical boundary layer equations

has shown that they inevitably lose their validity near a point of vanishing skin
friction. The breakdown of the boundary layer solution occurs in two different ways
characterized by the formation of a Goldstein singularity, Goldstein (1948), or of a
marginal separation singularity, Ruban (1981b) or Stewartson, Smith & Kaups (1982),
depending on the intensity of the adverse pressure gradient. As shown by Stewartson
(1970), a separation singularity of the Goldstein type cannot, in general, be eliminated
by means of a local interaction strategy where the displacing effect of the boundary
layer affects the outer inviscid flow at leading, rather than higher, order. This is
in contrast to triple-deck theory which has proven very effective in describing fully
attached flows which are forced to separate over a short distance due to the occurrence
of an asymptotically large pressure gradient. In contrast to the case of a Goldstein
singularity, for a marginally separated singularity the solution can be continued further
downstream, with the result that the wall shear stress further decreases, vanishes but



58 S. Braun and A. Kluwick

immediately recovers. Typically the intensity of the adverse pressure gradient acting
on the boundary layer is measured by some controlling parameter which takes on
a critical value at marginal separation. A slight increase of this parameter then is
found to lead again to the occurrence of a Goldstein singularity. However, since the
intensity of this singularity becomes arbitrarily small as the controlling parameter
approaches its critical value it can be eliminated by locally taking into account the
interaction between the viscous wall layer and the inviscid external flow region. This
in turn leads to a uniformly valid description of marginally separated flows, i.e. flows
which are on the verge of separation or even include short separation bubbles as
demonstrated first by Ruban (1981a, b) and Stewartson et al. (1982).

Although a number of open problems remain, including the transition from local
to global separation, a fairly complete picture of two-dimensional laminar boundary
layer separation has emerged in the past three decades, see e.g. Kluwick (1998). The
situation is much less satisfactory if three-dimensional flows are considered. Here
only the first steps have been taken, both in flows governed by triple deck theory
and marginally separated flows. In the latter case, which is of interest here, two
different strategies have been applied in the past to capture three-dimensional effects.
First, one can extend the analysis of Ruban and Stewartson et al. by considering the
local properties of a three-dimensional boundary layer with (or without) additional
symmetry conditions near the point (line) of vanishing wall shear, e.g. Brown (1985),
Zametaev (1987), Duck (1989), and Vilenskii (1991), see also Smith (2000). But then
the question arises of if and how these local structures are embedded in a global
flow field, which has not been addressed in sufficient depth so far. Indeed preliminary
investigations by Kluwick & Reiterer (1998) point to serious difficulties in some cases.
Problems of this type are avoided in the second approach, adopted here, where one
considers localized three-dimensional disturbances of an incoming two-dimensional
boundary layer which is on the verge of separation caused for example by a surface-
mounted obstacle. The present study therefore can be viewed as the counterpart of the
triple deck study carried out by Smith, Sykes & Brighton (1977). In this connection it is
of interest also to note the study by Smith & Daniels (1981) concerning flows past two-
dimensional obstacles. Like the present investigation and the paper by Hackmüller &
Kluwick (1989) it deals with a case where the Goldstein singularity is removable in a
physically sensible fashion. In contrast to these contributions, however, the oncoming
undisturbed boundary layer is assumed to be firmly attached which leads to a vastly
different flow response to obstacle forcing, see also Sychev et al. (1998).

Following the problem formulation in § 2 an asymptotic analysis of the flow prop-
erties holding in the limit of large Reynolds numbers is carried out in § 3. Numerical
solutions of the resulting nonlinear integro-differential equation for the streamwise
component of the wall shear are presented in § 4. The numerical calculations indicate
that the disturbances generated by a localized three-dimensional surface-mounted
obstacle exhibit qualitative rather than simply quantitative differences if the incoming
boundary layer is described by different branches of the solution for the case of
strictly two-dimensional flow. This points to the existence of a bifurcation problem
which is investigated in § 5.

2. Problem formulation
As pointed out before we consider interaction processes that are generated when a

two-dimensional almost separated boundary layer on a locally flat plate encounters a
three-dimensional surface-mounted obstacle, figure 1. Specific examples are provided
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Figure 1. Interaction of a nearly separated two-dimensional boundary layer with a three-
dimensional surface-mounted obstacle; dimensions of the various layers in the interaction regime.

by the flow in the leading edge region of a slender airfoil at a small angle of attack,
Ruban (1981a), and by the flow past the lower wall of a channel if fluid is removed
through the upper wall, Hsiao & Pauley (1994). In the first case the flow at the
upper surface of the airfoil initially overexpands and is driven towards separation
by the subsequent recompression. Similarly, the pressure increase associated with the
removal of fluid in the second case leads to a reduction of the shear stress on the
lower wall of the channel and may cause separation eventually if the suction rate is
sufficiently high.

The characteristic Mach number of the flow is assumed to be small so that density
changes can be neglected and the flow is taken to be laminar. Non-dimensional
quantities are then introduced in the form

(x, y, z) =
1

L̄
(x̄, ȳ, z̄), u = (u, v, w) =

1

ū∞
(ū, v̄, w̄),

p =
p̄− p̄∞
ρ̄∞ū2∞

, (τx, τz) =
L̄

ρ̄∞ν̄∞ū∞
(τ̄x, τ̄z),

 (2.1)

where x̄, z̄ and ȳ are the coordinates in the stream-/spanwise directions and normal
to the wall and ū, w̄ and v̄ the corresponding velocity components, respectively.
Furthermore, p̄, τ̄x, τ̄z , ρ̄, ν̄ and L̄ denote the pressure, the x- and z-components of the
shear stress, the density, the kinematic viscosity and a suitable reference length. The
subscript ∞ indicates values of the field quantities at an appropriate reference state,
e.g. the unperturbed free stream in front of an airfoil. The governing Navier–Stokes
equations may then be written as

(u · ∇)u = −∇p+
1

Re
∆u, ∇ · u = 0, (2.2)

and the no-slip condition u = 0 is imposed at the solid boundary.
In the limit of large Reynolds numbers

Re =
ū∞L̄
ν̄∞
→ ∞ (2.3)
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investigated here, the interaction region of extent ε in the stream- and spanwise
directions exhibits a three-tiered structure similar to that holding in two-dimensional
flows, figure 1. This will be confirmed later by means of asymptotic analysis, which
also yields a relationship between ε and Re.

One crucial point, to be addressed here concerns the admissible height H (non-
dimensionalized with L̄) of a localized surface-mounted obstacle, i.e. its maximum
height which leaves the interaction process intact. According to slender wing theory
the pressure disturbances caused by the obstacle are of O(H/ε), where H characterizes
the height of the obstacle. In order to affect the interaction process substantially these
must be of the same order as the induced pressure perturbations, which are of
O(Re−1/2). As a result we obtain the same order of magnitude estimate

H ∼ εRe−1/2 (2.4)

as in the case of strictly two-dimensional flows, Hackmüller & Kluwick (1989).

3. Asymptotic analysis
3.1. Derivation of the interaction equation

We start with the expansion of the stream function holding in the lower-deck region
2 of the interaction regime for strictly two-dimensional flows, see e.g. Ruban (1981b),

ψ2(s2, y2) ∼ Re−1/2

[
ε3/4

p00

6
y3

2 + ε3/2
A1(s2)

2
y2

2 + · · ·+ ε9/4ψ22(s2, y2) + · · ·
]
. (3.1)

Herein the first term represents the separation profile and A1 represents both the
lateral leading-order skin friction and the boundary layer (negative) displacement.
It is influenced by the interaction process and determined by the condition that the
second-order term ψ22 does not grow exponentially as the distance normal to the
wall y2 tends to infinity. Its asymptotic up/downstream behaviour A1(s2 → ±∞) ∼
a0|s2| + b10Γ/|s2| + · · · follows from the limiting solution of the classical boundary
layer equations which exhibits the marginal separation singularity. The values of
the constants a0 and b10 depend on the specific problem under investigation and Γ
measures the deviation of the controlling parameter α (e.g. angle of attack) from its
critical value αc characterizing the occurrence of marginal separation, α − αc = ε2Γ .
The estimate of the magnitude of the secondary flow outlined below then suggests
that the appropriate generalization of (3.1) for the velocity components, including the
additional effect of a three-dimensional surface-mounted obstacle on the interaction
process, is given by

u2 ∼ ε1/2
p00

2
y2

2 + ε5/4A1(s2, z2)y2 + · · ·+ ε2u22(s2, y2, z2) + · · · ,

v2 ∼ Re−1/2

[
ε1/2

∂

∂s2
(−A1 + p00h(s2, z2))

y2
2

2
+ · · ·+ ε5/4v22(s2, y2, z2) + · · ·

]
,

w2 ∼ ε2w20(s2, y2, z2) + · · · .


(3.2)

The local coordinates s, y and z are defined by the relationships

x = x0 + εs2, y = Re−1/2(ε1/4y2 + εh(s2, z2)), z = εz2, (3.3)

where the index 2 indicates lower-deck quantities and Prandtl’s transposition theorem
was used for convenience to fulfil the no-slip condition at y2 = 0. Here x0 is the
location of the marginal separation singularity according to classical boundary layer
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theory and h(s2, z2) represents the shape of the obstacle. Similarly to the case of planar
flow, A1(s2, z2) is determined by the second-order problem. For interaction to come
into play at this level of approximation the pressure gradient has to be of the form

∂p2

∂x
∼ p00 + · · ·+ ε3/2

∂pi2(s2, z2)

∂s2
+ · · · , ∂p2

∂z
∼ ε3/2 ∂p

i
2

∂z2

+ · · · , (3.4)

where p00 and pi2 denote the prescribed pressure gradient of the inviscid flow field
at x0 and the induced pressure. Here, motivated by the results for two-dimensional
flows, it has been tacitly assumed that the pressure is constant across the boundary
layer. This is equivalent to assuming ε � Re−1/2, that is that the streamwise extent
ε of the interaction region is large compared to the boundary layer thickness, a
fact which will be confirmed later. The extent of the interaction region and the
leading-order magnitude of the velocity in the spanwise direction follow from the
requirement of balanced inertia, pressure and friction forces in the lower deck, i.e.
u ∂w/∂x ∼ ∂p/∂z ∼ Re−1∂2w/∂y2 ∼ ε3/2. If we require further the induced pressure
gradient to be of the same magnitude in stream- and spanwise directions, it follows
that z ∼ ε and w ∼ ε2.

In the main deck 3 the appropriate coordinate normal to the wall is y3 with
y = Re−1/2(y3 + εh(s2, z2)) and the expansions for the velocity components are

u3 ∼ ψ′00(y3) + εu31(s2, y3, z2) + · · · ,
v3 ∼ Re−1/2

(
v30(s2, y3, z2) + ψ′00

∂h

∂s2
+ · · ·

)
,

w3 ∼ ε5/2w30(s2, y3, z2) + · · · .

 (3.5)

Here ψ′00(y3) is the leading-order velocity profile in the streamwise direction at
x0 given from classical boundary layer theory with the asymptotic representations
ψ′00(y3 → 0) ∼ p00y

2
3/2 and ψ′00(y3 → ∞) ∼ U00 where U00 denotes the velocity of the

outer inviscid flow field at the solid boundary at x = x0. The order of magnitude of
the leading-order term in the expansion for w is the result of the balance of inertia
and pressure forces in the momentum equation in the z-direction. Insertion of (3.5)
into the full Navier–Stokes equations (2.2) leads to the solutions

u31 = ψ′′00

A1 − p00h

p00

− s2 d

dy3

[
ψ′00

∫ y3

0

p00 − ψ′′′00

ψ′200

dȳ3

]
,

v30 = −ψ′00

[
∂

∂s2

(A1 − p00h)

p00

−
∫ y3

0

p00 − ψ′′′00

ψ′200

dȳ3

]
,

w30 = − 1

ψ′00

∫ s2

−∞
∂pi2
∂z2

ds̄2.


(3.6)

The upper-deck ‘4’ expansions expressed in terms of the appropriate coordinate y4,
y = εy4 + Re−1/2εh assume the form

u4 ∼ U00 + · · ·+ Re−1/2u41(s2, y4, z2) + · · · ,
v4 ∼ Re−1/2

(
v40(s2, y4, z2) +U00

∂h

∂s2

)
+ · · · ,

w4 ∼ Re−1/2w40(s2, y4, z2) + · · · ,
∂p4

∂x
∼ p00 + · · ·+ Re−1/2ε−1 ∂p

i
4(s2, y4, z2)

∂s2
+ · · · ,


(3.7)
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in complete agreement with second-order boundary layer theory. Equating the pres-
sure gradient in the upper and lower decks given by (3.4) and (3.7),

Re−1/2ε−1 ∂p
i
4

∂s2
∼ ε3/2 ∂p

i
2

∂s2
,

leads to the estimate of the extent of the interaction regime ε ∼ Re−1/5 known from
investigations of planar flows. By substitution into the continuity and momentum
equations one obtains

U00u41 = −pi4, ∆φ = 0, (3.8)

where φ(s2, y4, z2) denotes the velocity potential defined by

∂φ

∂s2
= u41,

∂φ

∂y4

= v40,
∂φ

∂z2

= w40.

The solution of the Laplace equation in the half-space y4 > 0 satisfying the matching
condition v40(s2, y4 → 0, z2) = v30(s2, y3 →∞, z2) is given by

φ = − 1

2π

∫ ∞
−∞

∫ ∞
−∞

v30(ξ, y3 →∞, η)

[(s2 − ξ)2 + y2
4 + (z2 − η)2]1/2

dξ dη. (3.9)

The induced pressure is consequently deduced as

pi4(s2, 0, z2) = pi2(s2, z2) = − U2
00

2πp00

∫ ∞
−∞

∫ ∞
−∞

1

[(s2 − ξ)2 + (z2 − η)2]1/2

× ∂2

∂ξ2
(A1 − p00h) dξ dη (3.10)

using relations (3.6) and (3.8) after integration by parts, Hackmüller & Kluwick
(1991), see also Kluwick, Reiterer & Hackmüller (1997). To determine the as yet
unknown function A1 we have to investigate the lower-deck equations up to second
order. To simplify the boundary conditions of the resulting equations and to eliminate
the various parameters entering the description of the undisturbed boundary layer
we introduce

u22 =
a2

0

24
s2y

4
2 +

3a2
0p00

13440
y8

2 + A2(s2, z2)y2 +
A2

1

2p00

− a2
0

2p00

s22 +U22,

v22 = − a2
0

120
y5

2 +
a2

0

p00

s2y2 − ∂A2

∂s2

y2
2

2
− A1

p00

∂A1

∂s2
y2 + V22,

 (3.11)

where A2 is unknown at this level of approximation, and the affine transformations

s2 = a
−2/5
0 p

−1/5
00 U

4/5
00 X, U22 = a

6/5
0 p

−7/5
00 U

8/5
00 U,

y2 = a
−1/10
0 p

−3/10
00 U

1/5
00 Y , V22 = a

3/2
0 p

−3/2
00 U00V ,

z2 = a
−2/5
0 p

−1/5
00 U

4/5
00 Z, w20 = a

6/5
0 p

−7/5
00 U

8/5
00 W,

pi2 = a0p
−1
00 U

2
00P , A1 = a

3/5
0 p

−1/5
00 U

4/5
00 A,

h→ a
3/5
0 p

−6/5
00 U

4/5
00 h, Γ → −2−1a

1/5
0 p

−2/5
00 U

8/5
00 b

−1
10 Γ .


(3.12)
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One finally obtains

∂U

∂X
+
∂V

∂Y
+
∂W

∂Z
= 0,

∂2U

∂Y 2
− Y 2

2

∂U

∂X
− Y V =

∂P

∂X
,

∂2W

∂Y 2
− Y 2

2

∂W

∂X
=
∂P

∂Z
.


(3.13)

The corresponding boundary conditions and asymptotic representations of A in the
limit X → ±∞ are

Y = 0 : U = X2 − A2, V = 0, W = 0,
∂V

∂Y
= A

∂A

∂X
−X,

X →∞ : A2 ∼ X2 − Γ − 3Γλπ

8X5/2
+ · · · ,

X → −∞ : A2 ∼ X2 − Γ +
2λ

(−X)1/2
+ · · · ,


(3.14)

and the requirement of no exponential growth of the field quantities for Y → ∞.
Using the analysis of Stewartson (1970) and the interaction relationship (3.10) one
readily verifies that a solution to this system is only possible if the following solvability
condition is satisfied (Hackmüller & Kluwick 1991):

A2 −X2 + Γ =
λ

2π

∫ X

−∞
dt

(X − t)1/2

∫ ∞
−∞

∫ ∞
−∞

1

[(t− ξ)2 + (Z − η)2]1/2

×
(
∂3

∂ξ3
+

∂3

∂ξ∂η2

)
(A− h) dξ dη,

λ =
(− 1

4
)!

21/2( 1
4
)!
.


(3.15)

As in the case of purely two-dimensional flow its solution determines the x-component
of the wall shear stress

τwx = Re11/20 ∂u2

∂y2

∣∣∣∣
y2=0

∼ Re3/10a
3/5
0 p

−1/5
00 U

4/5
00 A+ · · · . (3.16)

With A and therefore also P known the crossflow velocity W can be calculated from
the linear equation (3.13) by means of Fourier transformation to yield in the Fourier
space

W̃ (k, Y , Z) =

(
1
2

)
!
(

1
4

)
!Y 1/2

π1/2(2i Ω1/2)3/4

(
e−3πi sgn(k)/4J1/4(r) +H−1/4(r)

)
×
∫ ∞
−∞

e−ikX ∂P

∂Z
dX, (3.17)

where Jν(s) andHν(s) denote Bessel’s function of the first kind and Struve’s function,
and Ω = ik/8, r = iΩ1/2Y 2. Expansion for small Y finally leads to

W (X,Y → 0, Z) ∼ −µ
π
Y

∫ X

−∞
1

(X − t)3/4

∂P

∂Z
dt+ O(Y 2), µ =

(
1
2

)
!
(− 1

4

)
!

21/4
. (3.18)
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From this result one immediately derives the leading-order term of the wall shear in
the spanwise direction,

τwz = Re11/20 ∂w2

∂y2

∣∣∣∣
y2=0

∼ Re3/20a
13/10
0 p

−11/10
00 U

7/5
00

(
−µ
π

∫ X

−∞
1

(X − t)3/4

∂P

∂Z
dt+ · · ·

)
(3.19)

whose order of magnitude is seen to be much smaller than that of the wall shear in
the streamwise direction.

The interaction equation (3.15) will be solved numerically using a spectral method.
To this end it is useful to decompose the wall shear and the geometry of the obstacle
in the form

A(X,Z) = A∞(X) + A1(X,Z), h(X,Z) = h∞(X) + h1(X,Z), (3.20)

where the subscripts ∞ and 1 refer to two-dimensional and three-dimensional contri-
butions, respectively. As a result one obtains

A2
∞ −X2 + Γ = λ

∫ ∞
X

(A∞ − h∞)′′

(ξ −X)1/2
dξ, A∞(X → ±∞) ∼ |X|+ · · · (3.21)

and

2A∞A1 + A2
1 =

λ

2π

∫ X

−∞
dt

(X − t)1/2

∫ ∞
−∞

∫ ∞
−∞

1

[(t− ξ)2 + (Z − η)2]1/2

×
(
∂3

∂ξ3
+

∂3

∂ξ∂η2

)
(A1 − h1) dξ dη,

A1(X → ±∞, Z)→ 0.


(3.22)

Equation (3.21) is the solvability condition for planar flow known from previous
work, Hackmüller & Kluwick (1989), whose solution A∞ is prescribed in (3.22) to
determine the three-dimensional contribution A1 to the wall shear A.

3.2. The limiting cases of slender and wide obstacles

The solvability condition (3.15) or its equivalent form given by equations (3.21)
and (3.22) has to be solved numerically in general. Before doing so it is, however,
useful to consider the limiting cases of slender and wide surface-mounted obstacles
where considerable simplifications are possible. The resulting approximations are
not only useful insofar as they establish connections to earlier studies dealing with
quasi-three-dimensional flows but also as a means to check the numerical scheme
used to investigate obstacles whose extent in the spanwise direction measured by the
parameter B is of order one. In both cases B � 1 and B � 1 the z-coordinate has to
be stretched appropriately

Ẑ =
Z

B
. (3.23)

In the limit B → 0, which will be considered first, integration by parts with respect to
ξ of the part containing the third ξ-derivative and with respect to η̂ of the remaining
part and substitution of the variable s = (t − ξ)/(Ẑ − η̂) in place of ξ leads to the
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following form of the term on the right-hand side of equation (3.22):

λ

2π

∫ X

−∞
dt

(X − t)1/2

∫ ∞
−∞

∫ ∞
−∞

B

(s2 + B2)3/2

sgn(Ẑ − η̂)

(Ẑ − η̂)2

×
(

∂2

∂s∂η̂
+

1

(Ẑ − η̂)

∂

∂s

)(
Â1(t− (Ẑ − η̂)s, η̂)− ĥ1(t− (Ẑ − η̂)s, η̂)

)
dη̂ds.

Making use of the relationship

lim
B→0

B2

2

∫ ∞
−∞

ϕ(s)

(s2 + B2)3/2
ds = ϕ(0)

holding for continuously differentiable functions ϕ with bounded first derivatives, one
then obtains the approximate version of equation (3.22)

2A∞Â1+Â2
1 ∼ λ

Bπ

∫ X

−∞
dt

(X − t)1/2

∂

∂t

∫ ∞
−∞

1

|Ẑ − η̂|
(
∂

∂η̂
+

1

Ẑ − η̂
)

(Â1 − ĥ1) dη̂ + O(1)

(3.24)

with A1(X,Z) = Â1(X, Ẑ) and h1(X,Z) = ĥ1(X, Ẑ), from which it may be inferred
that

A ∼ A∞ + h1 + O(B), B → 0. (3.25)

At leading order, therefore, the perturbation displacement thickness A simply equals
the function A∞ + h1 which characterizes the sum of the contribution of the planar
problem and the shape of the surface-mounted obstacle.

To simplify the description of flows past wide obstacles the integration variable
ζ = B(Ẑ − η̂) is introduced. Rewriting the term within brackets on the right-hand
side of equation (3.15) in the form(

∂2

∂ξ2
+

1

B2

∂2

∂(Ẑ − ζ/B)2

)
Â(ξ, Ẑ − ζ/B) =

∂2

∂ξ2
Â(ξ, Ẑ) + O(B−1)

then suggests the approximation

Â2 −X2 + Γ ∼ λ
∫ ∞
X

1

(ξ −X)1/2

∂2

∂ξ2
(Â− ĥ) dξ + O(B−2), B →∞. (3.26)

The lateral distance Z enters the quasi-two-dimensional form of the solvability
condition for A as a parameter only. Solutions to this equation can thus be constructed
from the results for two-dimensional flows (cf. equation (3.21)) as pointed out by
Hackmüller & Kluwick (1991). The limiting solution (3.25) and that of equation
(3.26) are depicted in figures 6 and 7.

4. Numerical analysis
4.1. Numerical scheme

Applying a Fourier transform with respect to the spanwise coordinate Z , namely

f̃(X, k) =

∫ ∞
−∞
f(X,Z) e−ikZ dZ, (4.1)



66 S. Braun and A. Kluwick

to equation (3.22), making use of the convolution theorem and assuming that the
surface-mounted obstacle is symmetrical with respect to the z-axis yields

2A∞Ã1 +

∫ ∞
−∞
A2

1 e−ikZ dZ =
λ

π

∫ X

−∞
dt

(X − t)1/2

∫ ∞
−∞
K0(|t− ξ|k)

×
(
∂3

∂ξ3
− k2 ∂

∂ξ

)
(Ã1 − h̃1) dξ.

Here K0(s) denotes the modified Bessel function of zeroth order, Abramowitz &
Stegun (1970). Integration by parts with respect to ξ and extracting the singular part
of the modified Bessel function K1(s) leads to

2A∞Ã1 +

∫ ∞
−∞
A2

1 e−ikZ dZ = λ

∫ ∞
X

1

(ξ −X)1/2

(
∂2

∂ξ2
− k2

)
(Ã1 − h̃1) dξ

+
λk

π

∫ X

−∞
dt

(X − t)1/2

∫ ∞
−∞
K1(|t− ξ|k) sgn(ξ − t)

(
∂2

∂ξ2
− k2

)
(Ã1 − h̃1) dξ, (4.2)

with

K1(s) = K1(s)− 1

s
. (4.3)

Exchanging the sequence of integration of the second term on the right-hand side of
equation (4.2) finally results in

2A∞Ã1 +

∫ ∞
−∞
A2

1 e−ikZ dZ = λ

∫ ∞
X

1

(ξ −X)1/2

(
∂2

∂ξ2
− k2

)
(Ã1 − h̃1) dξ

−λ√k
∫ ∞
−∞
G((ξ −X)k)

(
∂2

∂ξ2
− k2

)
(Ã1 − h̃1) dξ, (4.4)

where the function G is defined by

G(s) = −2

π

∫ ∞
0

K1(|s+ ν2|) sgn(s+ ν2) dν. (4.5)

Fast numerical calculation of G(s) for large arguments is achieved by using its
asymptotic representations. Applying Watson’s lemma to (4.5) we obtain

G(s→∞) ∼ 1√
s

+ O

(
e−s√
s

)
. (4.6)

Straightforward application of Watson’s lemma to expression (4.5) does not lead to
the correct asymptotic behaviour for s→ −∞. However, comparison of the Fourier-
transformed equation (3.24) and (4.4) in the limit X →∞ and k →∞,

−
∫ X

−∞
1

(X − t)1/2

∂

∂t
(Ã1 − h̃1) dt ∼ k3/2

∫ ∞
−∞
G((ξ −X)k)(Ã1 − h̃1) dξ

yields the desired result

G(s→ −∞) ∼ 1

2(−s)3/2
+ O((−s)−7/2) (4.7)
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Figure 2. G(s) and its asymptotes, equations (4.5), (4.6) and (4.7).

after integration by parts. An alternative approach to (4.7) is to introduce ω = (−s)1/2ν
as a new integration variable so that

G(s→ −∞) = −2(−s)1/2

π

∫ ∞
0

[
− 1

−s(ω2 − 1)
+K1(−s|ω2 − 1|) sgn(ω2 − 1)

]
dω

∼ − 2

π(−s)1/2

∫ ∞
0

[
K1

(
2q +

q2

(−s)
)
−K1

(
2q − q2

(−s)
)]

dq + · · ·

on writing ω = 1 − q/(−s) for ω < 1 and ω = 1 + q/(−s) for ω > 1. Taylor series
expansion of the modified Bessel function immediately yields

G(s→ −∞) ∼ − 4

π(−s)3/2

∫ ∞
0

q2K ′1(2q) dq + · · · = 1

2(−s)3/2
+ · · · .

A graphical representation of G is given in figure 2.
The integrals in equations (3.21) and (4.4) are split into two or three parts,∫ ∞

X

· dξ =

(∫ XN

X

+

∫ ∞
XN

)
· dξ,

∫ ∞
−∞
· dξ =

(∫ X0

−∞
+

∫ XN

X0

+

∫ ∞
XN

)
· dξ. (4.8)

The calculation domain in the streamwise directionX ∈ [X0, XN] used in the numerical
scheme is chosen to be large enough so that the contributions of the outside range
can be calculated analytically using the asymptotic representations of A∞(X → ±∞),
(3.14) and A1(X → ±∞, Z) whose asymptotic behaviour is determined by the shape
of the obstacle h1(X,Z). The remaining integrals in (4.8) are treated numerically. To
this end the calculation domain is divided into N equidistant cells with a mesh size
of ∆X = (XN −X0)/N and X discretized by Xi = X0 + i∆X, i = (0, . . . , N). Assuming
sufficiently smooth solutions of the integral equations, a linear approximation of the
form

f(ξ) = fj +
fj+1 − fj

∆X
(ξ − ξj) + O(∆X2), fj = f(ξj), ξ ∈ [ξj, ξj+1]
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leads to∫ XN

Xi

f(ξ)

(ξ −Xi)1/2
dξ

≈
√

∆X

3

[
4fi + 4

N−1∑
j=i+1

((j − i+ 1)3/2 − 2(j − i)3/2 + (j − i− 1)3/2)fj

+(4(N − i− 1)3/2 + 2(3− 2N + 2i)(N − i)1/2)fN

]
, i = (0, . . . , N − 1)

(4.9)

after exact integration of the kernel function. Similar considerations lead to∫ XN

X0

G((ξ −Xi)k)f(ξ) dξ ≈ ∆X

2

[
N−1∑
j=1

(Gj+1,i + Gj−1,i)fj + G1,if0 + GN−1,ifN

]
(4.10)

with Gj,i = G((j− i)∆Xk). Derivatives were replaced by second-order-accurate central
differencing formulas and the calculation domain in the Fourier space was limited
to [0,M∆k]. Here M + 1 is the number of grid points, ∆k = π/ZM the step size of
the wavenumber k and [0, ZM] the corresponding domain in the spanwise direction
of the physical space. Assuming obstacles which are symmetrical with respect to the
z-axis, i.e. A(X,Z) = A(X,−Z), it is sufficient to perform a cosine Fourier transform,
having the symmetrical discrete form

f̃(p∆k) =

√
2

M

[
f0

2
+

M−1∑
j=1

fj cos
πpj

M
+ (−1)p

fM

2

]
, p = 0, . . . ,M, (4.11)

so that double application of (4.11) generates the primary quantity fp = f(pZM/M).

It should be noted that the discretization of the integrals of (4.4) with respect to the
streamwise coordinate by means of the trapezium rule after a transformation of the
integration variable to avoid the singularity of the kernel (scheme II of Stewartson
et al. (1982)) is not sufficient to prevent unphysical oscillations of the solution on
the calculation grid. However, the stepwise linear approximation of the solution A
described above leads to satisfactory smooth results.

To obtain A1(X,Z) for a specific value of Γ the corresponding solution A∞(X)
of equation (3.21) is substituted into (4.4). A1(X,Z) then is written in the form
A

(n+1)
1 = A

(n)
1 + ∆A(n)

1 and an iteration procedure is applied to equation (4.4) which
then symbolically is of the form

M1∆Ã
(n)
1 = M2Ã

(n)
1 −

(
A

(n)
1

2
)̃

+ obstacle contributions + asymptotic parts (4.12)

after linearization with respect to the deviation ∆A(n)
1 . Here n denotes the nth iteration

and M1, M2 are matrices fixed by the numerical scheme. In each iteration step the
linear system (4.12) is solved for ∆Ã(n)

1 and back and forth Fourier transformation is

used to update A(n)
1 and to calculate the first and second terms on the right-hand side

from the previous step. The iteration process is continued until the discrete L2 norm
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X0 XN N ZM M ε

−(10–5) 7–15 200–400 ' 30B 100–1000 10−6

Table 1. Typical parameter values in the numerical scheme.
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Figure 3. Wall shear distributions and non-uniqueness in the case of two-dimensional flow past a
locally flat wall (equation (3.21) with h∞ = 0), Ruban (1981b), Stewartson et al. (1982). Dashed lines
represent corresponding solutions of the classical boundary layer equations (marginal separation
and weak Goldstein singularity).

is less than some certain value ε:[
(XN −X0)

N

ZM

M

N∑
i=0

M∑
p=0

(A(n+1)
1 (Xi, Zp)− A(n)

1 (Xi, Zp))
2

]1/2

< ε.

Here we have used the notation Zp = pZM/M. The initial values A(0)
1 (Xi, Zp) are

chosen to be zero and an under-relaxation factor of about 0.6–0.9 is used to update
A

(n)
1 in the iteration process. Numerical parameters determining the calculation domain

and the discretization are summarized in table 1.

4.2. Numerical results

Before turning to a discussion of three-dimensional flows it is useful to recall some
results for planar flows past a locally flat wall, equation (3.21) with h∞ = 0. First,
interaction delays separation as can be seen from figure 3 for Γ = 0. Secondly, there
exists an upper bound Γc of Γ , up to which the theory of marginally separated flows
holds. For Γ > Γc, where Γc ≈ 2.66, the interactive strategy breaks down and (real)
solutions of the integral equation (3.21) do not exist, Chernyshenko (1985), indicating
a global change of the flow field presumably associated with a rapid transition from
a short separation bubble to a much longer one. For further comments on the
phenomenon of short bubble bursting the reader is referred to Sychev et al. (1998).
Finally, the solutions of the interaction equation are non-unique within the range
0 < Γ < Γc, figure 3. The usual way to express this non-uniqueness investigated
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Figure 4. Non-uniqueness of the planar boundary layer flow (h∞ ≡ 0), Stewartson et al. (1982).

in detail by Stewartson et al. (1982) and Brown & Stewartson (1983) is to plot the
value of the wall shear A∞ at X = 0 versus Γ . The resulting diagram is depicted in
figure 4.

As a representative example of solutions including three-dimensional effects we
consider isolated surface-mounted obstacles of the form

h1(X,Z) = H(1−X2)3 θ(1− |X|) e−(Z/B)2

, (4.13)

figure 5. Here H = h1(0, 0) is the maximum height of the obstacle, B a measure of its
width and θ(X) denotes Heaviside’s step function. The special choice (4.13) leads to
the asymptotic representations

Ã1(X → ±∞, k) ∼ ∓16
√
π

35
λHBk5/2 e−(kB/2)2 G(−kX)

X
+ · · · (4.14)

which can be derived from (4.4) in the sense of the first step of a successive approx-
imation applied to Ã1, i.e. by neglecting Ã1 and A1 in the integral terms of equation
(4.4). Results for the wall shear distribution A(X,Z) in the plane of symmetry Z = 0
and in the lateral direction at X = 0 are shown in figures 6 and 7 for different values
of B and fixed values of Γ and H . Specifically we consider a hill with H = 4 and
the case of an unperturbed boundary layer which is at the verge of separation but
still attached, Γ = 1. For large values of B, the numerical solutions of the interaction
equation (3.15) are found to be in excellent agreement with the solution of equation
(3.26) for quasi-two-dimensional flows obtained by Hackmüller & Kluwick (1991),
which predict the formation of a separation zone on the leeward side of the hill. As
the lateral extent B of the hill decreases, the axial component A of the wall shear
stress is seen to increase. As a consequence, the separated flow region shrinks and
eventually vanishes. Finally for B → 0 the numerical solution is seen to approach the
asymptotic result (3.25). It turned out that the value B ≈ 0.1 is the most sensitive
one concerning the requirements on the parameters of the numerical scheme. The
reason for this fact is the weaker decay behaviour of the solution A1 for X →∞ and
Z/B →∞ as can be seen from figures 6 and 7, respectively.
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Figure 5. Vertical sections of the shape h1(X,Z) of the obstacle according to (4.13) with H = 1 in
the streamwise (Z = 0) and spanwise (X = 0) directions.
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Figure 6. Typical solutions of (3.15) in the plane of symmetry Z = 0 for Γ = 1 (upper branch) for
the hill geometry (4.13) and various values of B and H = 4. Dashed lines denote the asymptotic
limits of the solutions for B → 0, (3.25), and B → ∞, (3.26), as well as the solution A∞(X) of the
plane problem without hill.

The effects of a dent with H = −1.5 on an attached boundary layer characterized
by Γ = 2 are considered in figures 8 and 9. Like figures 6 and 7 the numerical results
support the analytical prediction (3.25) holding in the limit B → 0. However, the
dent is seen to generate a more pronounced separated flow region. Also, in contrast
to figures 6 and 7 a strictly two-dimensional solution B → ∞ does not exist. As a
consequence, interacting flows past a localized three-dimensional dent are possible
only up to a maximum value of B . 3. Taking into account the results obtained by
Hackmüller & Kluwick (1989) the following qualitative picture of the flow past a
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Figure 7. Decay behaviour of typical solutions of (3.15) for Γ = 1 (upper branch) in the spanwise
direction for the hill geometry (4.13) and various values of B and H = 4. Dashed lines denote the
asymptotic limits of the solutions for B → 0, (3.25) and B → ∞, (3.26) as well as the value A∞(0)
of the plane problem without hill.

three-dimensional obstacle placed into an almost separated boundary layer emerges.
In the case of strictly planar flows B = ∞ solutions of the interaction equation exist (if
they exist at all) for a limited range of the parameter H characterizing the height of the
obstacle only. A simple argument supporting this finding results from the observation
that the terms on the right-hand side of equation (3.15) which depend on the shape
of the obstacle can be evaluated once h(X) is given, effectively leading in turn to a
modification of the parameter Γ . The non-existence of solutions for flows past locally
plane walls if Γ > Γc and for flows past surface-mounted obstacles if H exceeds a
critical value, therefore, appear to be closely related. The same argument also applies
to the case of three-dimensional flows and numerical calculations indicate that the
range of the parameter H for which solutions of equation (3.15) exists expands with
decreasing values of B. Indeed the asymptotic result (3.25) suggests that solutions for
|H | → ∞ may exist in the limit B → 0 but this has yet to be investigated.

Like the case of two-dimensional flows past locally flat walls where interactive
solutions do not exist if Γ > Γc the non-existence of solutions if B > Bc or |H | > Hc

is taken as an indication that a significant change of the flow field which cannot be
captured by the present theory will take place if the parameters B and |H | increase
beyond critical values Bc and Hc.

Three-dimensional disturbances of a planar flow characterized by a lower-branch
solution Γ = 2.03 generated by a dent with H = −0.25 are displayed in figures 10
and 11. Here the unperturbed flow exhibits an extended separation zone which is only
slightly modified by the dent of relatively small depth. Nevertheless, the approach to
the limiting results for B → 0 and B → ∞ is clearly visible. According to figures 6–9
localized surface-mounted obstacles generate disturbances of two-dimensional upper-
branch solutions which are localized in the stream- and spanwise direction as one
would expect intuitively. In sharp contrast, the disturbances generated in a flow
characterized by a lower-branch solution are seen to set up a flow field which
is periodic in the lateral direction and extends up to Z → ±∞. This interesting
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Figure 8. Solutions of (3.15) for Γ = 2 and a dent according to (4.13) for H = −1.5 and various
values of B (upper branch). No solutions can be found for B & 3.
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Figure 9. Decay behaviour in the lateral direction of the solutions of (3.15) for Γ = 2 and a dent
according to (4.13) for H = −1.5 and various values of B (upper branch). No solution can be
found for B & 3. The open circle denotes the limiting solution of the planar problem with a dent
of maximum possible depth H = −1.09.

result was checked carefully by changing the step size and lateral extent of the
computational domain. The numerical experiments indicate that the results shown
in figure 11 are reliable both for the wavelength and the amplitude of the periodic
pattern. Furthermore the numerical calculations show that the wavelength is almost
independent of B while the amplitude tends to zero for B → 0 and B → ∞ in order
to recover the asymptotic results holding in these limits.

In order to shed further light on the qualitatively different behaviour of two-
dimensional upper- and lower-branch solutions when subjected to localized three-
dimensional surface-mounted obstacles we now focus on the question of what happens
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Figure 10. Solutions of (3.15) for Γ = 2.03 and a dent according to (4.13) for H = −0.25 and
various values of B (lower branch).
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Figure 11. Decay behaviour in the lateral direction of the solutions of (3.15) for Γ = 2.03 and a
dent according to (4.13) for H = −0.25 and various values of B (lower branch).

to the three-dimensional solution if Γc is approached moving along the upper branch
of the A∞(0)-Γ curve. To obtain some preliminary insight into the flow behaviour, we
consider the dependence of the value of the wall shear A in the streamwise direction
at X = 0 on spanwise coordinate Z in more detail. Two remarkable observations
were made during the numerical investigation: first, the maximum possible hill height
H tends to zero in the limit ∆Γ = Γc − Γ → 0, in other words the three-dimensional
solution coincides with the plane one for Γ = Γc. Secondly, as can be seen from
figure 12 for fixed H and B the influence of the obstacle extends to increasing values
of Z for decreasing values of ∆Γ . In agreement with the results depicted in figure 11
a completely different behaviour of the three-dimensional solutions was found at the
lower branch. A periodic flow pattern appears without decay in the lateral direction,
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Figure 12. Numerical solutions of (3.15) for the upper branch near Γc for a hill shape according
to (4.13) with H = 0.01 and B = 1 (dashed line).
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Figure 13. Numerical solutions of (3.15) for the lower branch near Γc for a hill shape according to
(4.13) with H = 0.01 and B = 1 (dashed line).

figure 13. The wavelength and amplitude of the shear stress distribution depends on
the value of ∆Γ and is influenced by the geometry of the obstacle. Combining these
observations we conclude that the solution of the problem of interest bifurcates as we
pass through Γc moving from the upper to the lower branch of the A∞(0), Γ curve.

5. Bifurcation problem – three-dimensional solutions without an obstacle
5.1. Asymptotic analysis for ∆Γ → 0

To simplify the analysis of the bifurcation problem detected during the numerical
investigation we seek non-trivial three-dimensional solutions of the interaction equa-
tion (3.15) for a locally flat wall, h(X,Z) = h∞(X) ≡ 0. The difference Γc − Γ = ∆Γ
then enters as the only perturbation parameter. The parabolic shape of the A∞(0), Γ
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curve near Γc, figure 4, then suggests the following expansions for ∆Γ → 0:

A(X,Z; ∆Γ ) ∼ A∞c(X) +
√

∆Γa1(X,∆Γ
1/4Z) + ∆Γa2(X,∆Γ

1/4Z) + · · · , (5.1)

where the coordinate in the spanwise direction is suitably rescaled with respect to ∆Γ .
The leading-order term A∞c(X) in the expansion (5.1) of the wall shear distribution
is the solution for strictly planar flow with Γ = Γc. Insertion of (5.1) into (3.15) after
performing integration by parts with respect to ξ finally leads to the staggered system

O(1) : A2
∞c −X2 + Γc = λ

∫ ∞
X

A′′∞c
(ξ −X)1/2

dξ, (5.2)

O(
√

∆Γ ) :

(
2A∞c − λ

∫ ∞
X

dξ

(ξ −X)1/2

∂2

∂ξ2

)
ā1 = 0, (5.3)

O(∆Γ ) : ā2
1 + 2A∞cā2 − 1 = λ

∫ ∞
X

dξ

(ξ −X)1/2

∂2ā2

∂ξ2
+
λ

2

∂2

∂Z̄ 2

∫ ∞
X

ā1 dξ

(ξ −X)1/2
, (5.4)

where we have used a new integration variable ζ = (Z̄ − η̄)/∆Γ 1/4 instead of η̄
and Taylor series expansion of the integrand about Z̄ . Here Z̄ = ∆Γ 1/4Z denotes
the stretched coordinate in the spanwise direction and a1(X,∆Γ

1/4Z) = ā1(X, Z̄).
According to the assumption underlying the expansion (5.1) equation (5.2) simply
represents the two-dimensional version of the solvability condition for the critical
value Γc. Introducing abbreviations for the integral operators

I· = λ

∫ ∞
X

1

(ξ −X)1/2

∂2·
∂ξ2

dξ, J· = λ

∫ ∞
X

· dξ
(ξ −X)1/2

, (5.5)

equations (5.3) and (5.4) are recast in the form

(2A∞c − I)ā1 = 0, (5.6)

(2A∞c − I)ā2 = 1− ā2
1 +

1

2

∂2

∂Z̄ 2
Jā1. (5.7)

From the second-order equation (5.6) we infer

ā1(X, Z̄) = b(X)c(Z̄), (5.8)

where b(X) is the right eigenfunction corresponding to the eigenvalue 0 of the singular
operator defined by (5.3),

(2A∞c − I)b = 0. (5.9)

The shape function c(Z̄) remains undetermined at this stage of approximation and
has to be determined from the solvability condition of the third-order problem (5.7).
To this end we introduce the left eigenfunction n(X) of the operator 2A∞c− I defined
by the corresponding adjoint operator

(2A∞c − I)†n := 2A∞cn− λ d2

dX2

∫ X

−∞
n

(X − ξ)1/2
dξ = 0. (5.10)

Using the notation

〈 n, q 〉 :=

∫ ∞
−∞
n(X)q(X) dX (5.11)

for functions q with q(X → ±∞)→ 0 we obtain

〈 n, (2A∞c − I)ā2 〉 = 0. (5.12)
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Solutions to the third-order problem (5.7) therefore exist only if c(Z̄) satisfies the
‘evolution’ equation

c′′ − αc2 + β = 0, (5.13)

where

α =
2〈 n, b2 〉
〈 n, Jb 〉 , β =

2〈 n, 1 〉
〈 n, Jb 〉 (5.14)

are real constants.
Physically acceptable solutions of (5.13) are expressed most conveniently in terms

of the Jacobian elliptic functions cn(u|m), Abramowitz & Stegun (1970),

c(Z̄)

cs
= − cosϕ+

√
3 sinϕ

[
1− 2 cn2

(√
3 cosϕ+

√
3 sinϕ

√
αcs

6
Z̄

∣∣∣∣ 2 tanϕ√
3 + tanϕ

)]
,

(5.15)

where ±cs, cs =
√
β/α are the stationary points (c′ = 0) of (5.13) corresponding to

upper- and lower-branch solutions for planar flow; ϕ is an arbitrary constant within
the range [0, π/3], reflecting the infinite number of possible solutions of c(Z̄) in the
absence of a three-dimensional disturbance. It should be noted, however, that there
exists in addition a singular solution of (5.13), which can be represented by the Weier-
straß elliptic ℘-function in the form c(Z̄)/cs = 6℘(Z̄)/

√
αβ. Due to its unphysical

behaviour this unbounded solution is discarded in the present investigation.
The homoclinic orbit of (5.13), i.e. the aperiodic limiting case of bounded solutions,

is obtained by setting ϕ = π/3 in (5.15),

c(Z̄)

cs
= 1− 3 cosh−2

(√
αcs

2
Z̄

)
. (5.16)

Its asymptotic properties for large |Z̄ | are given by

c(Z̄ → ±∞)

cs
∼ 1− 12 exp (−√2αcs|Z̄ |) + O(exp (−2

√
2αcs|Z̄ |)) (5.17)

and therefore reflect the rapidly decaying behaviour of the solutions corresponding
to the upper branch as observed numerically. Furthermore, if (5.15) is expanded for
small ϕ one obtains

c(Z̄)

cs
∼ −1−√3ϕ cos (

√
2αcsZ̄) + O(ϕ2), ϕ→ 0, (5.18)

expressing the periodic structure of the lower-branch solutions.

5.2. Determination of b(X) and the constants α and β

The asymptotic results (5.17) and (5.18) indicate that

A(X,Z) ∼ A∞c(X) +
√

∆Γa1∞(X) + ∆Γa2∞(X) + · · ·
+ exp (k1∆Γ

1/4Z)(
√

∆Γb(X) + ∆Γb2(X) + · · ·) (5.19)

represents a possible solution of (3.15) for h ≡ 0 in the limit ∆Γ → 0 with k1 being
a real or complex number. Herein a1∞ and a2∞ characterize the deviation of A from
the critical shear stress distribution A∞c for planar flow while the term containing the
Z-dependence accounts for weak superimposed three-dimensional disturbances. By
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substitution of (5.19) into (3.15) one obtains

O(
√

∆Γ ) : (2A∞c − I)a1∞ = (2A∞c − I)b = 0 (5.20)

and therefore a1∞(X) = c1b(X) with c1 = const in agreement with equation (5.8).
Further, using this result and equating terms of O(∆Γ ) yields

(2A∞c − I)a2∞ = 1− c2
1b

2, (2A∞c − I)b2 = −2c1b
2 +

k2
1

2
Jb. (5.21)

The numerical solution procedure now is as follows. To determine A∞c, Γc, and b(X),
equation (3.21) is differentiated with respect to A∞(0) to yield

(2A∞ − I) dA∞
dA∞(0)

+
dΓ

dA∞(0)
= 0. (5.22)

Equations (3.21) and (5.22) were solved successively by means of a Newton iteration
method with an initially prescribed A∞(0) at the upper branch of the A∞(0), Γ curve,
figure 4, until the value of the derivative dΓ/dA∞(0) reached zero to the desired
accuracy. In this limit A∞(X)→ A∞c(X), Γ → Γc

.
= 2.66, and, as is seen by comparing

equations (5.22) and (5.20), dA∞(X)/dA∞(0)→ b(X). Since b(0) = 1, b(X) is a unique
function and, therefore, α and β are unique also, equations (5.14). Finally, c1 and k2

1

are determined uniquely in terms of α and β and as a consequence it is sufficient
to calculate particular solutions of equations (5.21) by imposing e.g. the condition
a2∞(0) = 0 and b2(0) = 0 yielding in turn the desired result c1

.
= ±0.878 and

k2
1

.
= ±1.21. From the relations c1 = ±(β/α)1/2 = ±cs, α = k2

1/(2c1) and β = k2
1c1/2

we finally deduce α
.

= 0.692 and β
.

= 0.533.
Results showing the form of the functions A∞c(X), b(X), a2∞(X), b2(X), and c(Z̄)

are depicted in figures 14 and 15. A comparison between numerical results and
analytical predictions for lower-branch solutions is carried out in the final figure 16.
Specifically we consider the variation of the wavenumber k characterizing the periodic
flow pattern in the z-direction with ∆Γ . The comparison strongly suggests that the
values of k2/

√
∆Γ obtained numerically tend to the theoretical leading-order limit

1.21 for ∆Γ → 0. It also indicates that higher-order terms estimated to be of O(∆Γ 1/4)
considerably influence the dependence of the wavenumber on ∆Γ except when ∆Γ
is extremely small. The extension of the asymptotic theory presented here to higher
order is currently under investigation.

6. Summary and conclusions
A numerical and analytical study of marginally separated flows past isolated

obstacles on a locally flat plate has been performed. As in the case of strictly two-
dimensional flow one has to distinguish between upper- and lower-branch solutions.
In contrast to this case, however, these solutions are seen to exhibit qualitatively
different properties if three-dimensional effects are accounted for. If an isolated hump
is placed in an oncoming flow described by an upper-branch solution the resulting
disturbances are as expected also localized, that is they rapidly decay in the stream
and lateral directions on a scale B which characterizes the width of the hump. For
B � 1 one recovers the quasi-two-dimensional results obtained earlier by Hackmüller
& Kluwick (1989) which can be constructed from solutions of the two-dimensional
version of the solvability condition. An approximate solution can also be obtained
for slender humps B � 1 which predicts that the three-dimensional disturbances of
the longitudinal component of the wall shear stress equals the local height of the
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Figure 14. Leading-order term A∞c(X) and correction b(X) of the wall shear near the critical
angle of attack Γc, equation (5.19).
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Figure 15. Variation of the wall shear in the spanwise direction, equation (5.15). Dotted lines: plane
upper- and lower-branch solutions, dashed line: asymptote of homoclinic orbit for Z̄ →∞, (5.17).

obstacle. Slender humps, if sufficiently high are therefore an effective means to force
reattachment of an oncoming marginally separated boundary layer locally.

Surprisingly, isolated obstacles are found to generate non-local disturbances if the
oncoming two-dimensional flow is described by a lower-branch solution. Instead
of generating perturbations which decay exponentially in the spanwise direction a
periodic flow pattern is formed which extends up to infinity. The numerical results
suggest that the wavelength is nearly independent of the width of the hump but
depends on the difference of the parameter Γ and its critical value Γc beyond
which no solution of purely two-dimensional flows past a locally flat wall exist. In
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Figure 16. Comparison between numerical and asymptotic results concerning the wavenumber
k = |k1|∆Γ 1/4 of the periodic flow pattern in the limit ∆Γ → 0 (lower branch). Open cir-
cles denote numerical results for H = 0.01 (H = 0.0001 for the smallest value of ∆Γ ) and
B = 1. Solid line: first-order solution (from equation (5.21), k2

1 = −1.21), dashed line: curve fit

k2/
√

∆Γ ∼ 1.21 + 2.8∆Γ 1/4.

addition the numerical investigations indicate that the amplitude associated with
the periodic flow pattern tends to zero as Γc − Γ → 0 and/or B → 0 as well as
B → ∞. As a consequence, the flow behaviour near Γ = Γc where the periodic flow
behaviour branches off the exponentially decaying one can be studied analytically
using asymptotic techniques. The applied method is closely related to methods used in
the theory of weakly nonlinear waves and the resulting ‘evolution equation’ describing
the variation of the flow field in the z-direction resembles the equation governing
Stokes, cnoidal and solitary wave solutions of the Korteweg–de Vries equation. This
in turn means that the resulting eigensolution describing weakly nonlinear three-
dimensional disturbances on a locally flat wall are non-unique in the sense that the
wavelength in the spanwise direction can be chosen arbitrarily within a semi-infinite
interval. Comparison of numerical and analytical results shows good agreement.
In passing we note that non-uniqueness of eigensolutions associated with three-
dimensional interacting flows has also been observed in the different context of freely
interacting supersonic boundary layers, Elliott, Rothmayer & Smith (1991).

Unfortunately, there seem to exist no experimental data on three-dimensional
marginal separation to which the predictions of the present theory can be compared.
One of these predictions is the waviness of the separation and attachment line as-
sociated with lower-branch solutions which follows immediately from the relationships
(5.1) and (5.8) by setting the wall shear A = 0. One thus concludes that the shape
of the separation and reattachment lines reflects the shape of the function c, see
equation (5.15) and figure 15. According to figure 14 the value of b(X) at the zeros
of A∞c differs by a factor of about 3. Therefore this effect is more pronounced at
reattachment than at separation. Three-dimensional marginally separated flows with
special emphasis on the transition to turbulence have recently been calculated by
Alam & Sandham (2000) using direct numerical simulation. In their study a planar
laminar boundary layer on a flat plate (Blasius type flow) encounters a region of
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suction located at the outer edge of the boundary layer in order to force local
boundary layer separation. A ‘disturbance strip’ in the form of imposed sinusoidal
disturbances of the wall-normal velocity in time and in the spanwise direction which
is located closely upstream of the suction region at the solid boundary finally results
in a three-dimensional separation bubble. The separation line is clearly wavy and
its shape is qualitatively similar to that of the prediction of the present work.
Unfortunately, however, insufficient information is available to perform a rigorous
comparison.

An obvious generalization of the results presented here is to include the effect
of the hump shape into the bifurcation problem. Analytical work supplemented by
more detailed numerical investigation of isolated but also periodic arrays of surface-
mounted obstacles are carried out here. Also the first steps have been taken to study
unsteady effects generated by impulsively generated or periodically oscillating flows.
In this connection the interesting question arises of whether the ‘evolution equation’
derived here then becomes an evolution equation in the time sense, i.e. describing
the propagation of weakly nonlinear waves in the transverse direction. Finally, it has
to be clarified whether the bifurcation behaviour reported here is restricted to flows
of boundary layer type or is characteristic of marginally separated flows in general.
Preliminary results obtained for marginally separated jet flows indicate that the latter
is true.

The authors would like to thank Professor H. Steinrück for useful suggestions and
the referees for a number of helpful comments including in particular the alternative
approach to equation (4.7). Also, discussions with Professor Ch. Schmeiser in the
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